Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Res Sq ; 2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-34426807

RESUMO

The spike (S) glycoprotein of the pandemic virus, SARS-CoV-2, is a critically important target of vaccine design and therapeutic development. A high-yield, scalable, cGMP-compliant downstream process for the stabilized, soluble, native-like S protein ectodomain is necessary to meet the extensive material requirements for ongoing research and development. As of June 2021, S proteins have exclusively been purified using difficult-to-scale, low-yield methodologies such as affinity and size-exclusion chromatography. Herein we present the first known non-affinity purification method for two S constructs, S_dF_2P and HexaPro, expressed in the mammalian cell line, CHO-DG44. A high-throughput resin screen on the Tecan Freedom EVO200 automated bioprocess workstation led to identification of ion exchange resins as viable purification steps. The chromatographic unit operations along with industry-standard methodologies for viral clearances, low pH treatment and 20 nm filtration, were assessed for feasibility. The developed process was applied to purify HexaPro from a CHO-DG44 stable pool harvest and yielded the highest yet reported amount of pure S protein. Our results demonstrate that commercially available chromatography resins are suitable for cGMP manufacturing of SARS-CoV-2 Spike protein constructs. We anticipate our results will provide a blueprint for worldwide biopharmaceutical production laboratories, as well as a starting point for process intensification.

2.
Biotechnol J ; 16(9): e2000641, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34174016

RESUMO

High throughput process development (HTPD) using liquid handling robotics and RoboColumns is an established methodology in downstream process development to screen chromatography resins and optimize process designs to meet target product profiles. However, HTPD is not yet widely available for use in viral clearance capability of the resin due to a variety of constraints. In the present study, a BSL-1-compatible, non-infectious MVM model, MVM-VLP, was tested for viral clearance assessment with various resin and membrane chromatography operations in a HTPD mode. To detect the MVM-VLP in the high throughput experiments, an electrochemiluminescence immunoassay (ECLIA) assay was developed with up to 5 logs of dynamic range. Storage time suitability of MVM-VLP solutions in various buffer matrices, in the presence or absence of a glycoprotein vaccine candidate, were assessed. Then, MVM-VLP and a test article monoclonal antibody (mAb) were used in a HTPD design that included commercially available ion exchange media chemistries, elucidating a wide variety of viral clearance ability at different operating conditions. The methodologies described herein have the potential to be a part of the process design stage in biologics manufacturing process development, which in turn can reduce risk associated with viral clearance validation studies.


Assuntos
Produtos Biológicos , Vacinas , Anticorpos Monoclonais , Cromatografia , Cromatografia por Troca Iônica
3.
Immunology ; 129(4): 482-95, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20002787

RESUMO

The lectin pathway of complement is activated upon binding of mannan-binding lectin (MBL) or ficolins (FCNs) to their targets. Upon recognition of targets, the MBL-and FCN-associated serine proteases (MASPs) are activated, allowing them to generate the C3 convertase C4b2a. Recent findings indicate that the MASPs also activate components of the coagulation system. We have previously shown that MASP-1 has thrombin-like activity whereby it cleaves and activates fibrinogen and factor XIII. MASP-2 has factor Xa-like activity and activates prothrombin through cleavage to form thrombin. We now report that purified L-FCN-MASPs complexes, bound from serum to N-acetylcysteine-Sepharose, or MBL-MASPs complexes, bound to mannan-agarose, generate clots when incubated with calcified plasma or purified fibrinogen and factor XIII. Plasmin digestion of the clot and analysis using anti-D-dimer antibodies revealed that the clot was made up of fibrin and was similar to that generated by thrombin in normal human plasma. Fibrinopeptides A and B (FPA and FPB, respectively) were released after fibrinogen cleavage by L-FCN-MASPs complexes captured on N-acetylcysteine-Sepharose. Studies of inhibition of fibrinopeptide release indicated that the dominant pathway for clotting catalysed by the MASPs is via MASP-2 and prothrombin activation, as hirudin, a thrombin inhibitor that does not inhibit MASP-1 and MASP-2, substantially inhibits fibrinopeptide release. In the light of their potent chemoattractant effects on neutrophil and fibroblast recruitment, the MASP-mediated release of FPA and FPB may play a role in early immune activation. Additionally, MASP-catalysed deposition and polymerization of fibrin on the surface of micro-organisms may be protective by limiting the dissemination of infection.


Assuntos
Coagulação Sanguínea/fisiologia , Fibrina/metabolismo , Serina Proteases Associadas a Proteína de Ligação a Manose/metabolismo , Acetilcisteína/imunologia , Coagulação Sanguínea/imunologia , Fibrinopeptídeo A/antagonistas & inibidores , Fibrinopeptídeo A/imunologia , Fibrinopeptídeo B/antagonistas & inibidores , Fibrinopeptídeo B/imunologia , Hirudinas/farmacologia , Humanos , Protrombina/imunologia , Sefarose/imunologia
4.
Biochim Biophys Acta ; 1784(9): 1294-300, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18456010

RESUMO

The complement system is an important recognition and effector mechanism of the innate immune system that upon activation leads to the elimination of foreign bodies. It can be activated through three pathways of which the lectin pathway is one. The lectin pathway relies on the binding of mannan-binding lectin (MBL) or the ficolins and the subsequent activation of the MBL-associated serine proteases (MASPs), namely, MASP1, 2 and 3 which all form complexes with both MBL and the ficolins. Major substrates have only been identified for MASP2 i.e. C4 and C2. For MASP1 only a few protein substrates which are cleaved at a low rate have been identified while none are known for MASP3. Since chromogenic substrate screenings have shown that MASP1 has thrombin-like activity, we wanted to investigate the catalytic potential of MASP1 towards two major proteins involved in the clotting process, fibrinogen and factor XIII, and compare the activity directly with that of thrombin. We found that rMASP1 and thrombin cleave factor XIII A-chain and the fibrinogen beta-chain at identical sites, but differ in cleavage of the fibrinogen alpha-chain. The thrombin turnover rate of factor XIII is approximately 650 times faster than that of rMASP1 at 37 degrees C, pH 7.4. rMASP1 cleavage of fibrinogen leads to the release of the proinflammatory peptide fibrinopeptide B. Thus rMASP1 has similar, but not identical specificity to thrombin and its catalytic activity for factor XIII and fibrinogen cleavage is much lower than that of thrombin. Nevertheless, rMASP1 can drive the formation of cross-linked fibrinogen. Since MASP1 is activated on contact of MBL or the ficolins with microorganisms, fibrinogen and factor XIII may be involved in the elimination of invading pathogens.


Assuntos
Fator XIII/metabolismo , Fibrinogênio/metabolismo , Serina Proteases Associadas a Proteína de Ligação a Manose/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Fator XIII/química , Fator XIII/genética , Fibrinogênio/química , Fibrinogênio/genética , Fibrinopeptídeo A/química , Fibrinopeptídeo A/metabolismo , Fibrinopeptídeo B/química , Fibrinopeptídeo B/genética , Fibrinopeptídeo B/metabolismo , Humanos , Técnicas In Vitro , Serina Proteases Associadas a Proteína de Ligação a Manose/genética , Dados de Sequência Molecular , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Subunidades Proteicas , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade por Substrato , Trombina/metabolismo
5.
FEBS Lett ; 580(6): 1691-5, 2006 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-16497300

RESUMO

Interaction of lectins with cell surface determinants may alter membrane properties. Using trypsinized rabbit erythrocytes as model we tested the capacity of an endogenous lectin in this respect. Galectin-1 is a member of an adhesion/growth-regulatory family known to interact for example with ganglioside GM(1) and also the hydrophobic tail of oncogenic H-Ras. Assays on membrane fluidity and osmofragility detect galectin-1's capacity to increase the parameters. Moreover, it increases susceptibility of erythrocytes to radical damage. These observations indicate the potential of this endogenous lectin to affect membrane properties beyond the immediate interaction with cell surface epitopes.


Assuntos
Eritrócitos/efeitos dos fármacos , Galectina 1/farmacologia , Hemaglutinação , Fluidez de Membrana , Fragilidade Osmótica , Animais , Carboidratos/farmacologia , Membrana Eritrocítica/efeitos dos fármacos , Eritrócitos/química , Coelhos , Tripsina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...